# 深度优先搜索
# 定义
要搜索一幅图,只需用一个递归方法来遍历所有顶点,在访问其中一个顶点时:
- 将它标记未已访问;
- 递归地访问它的所有没有被标记过的邻居顶点。
这种方法称为深度优先搜索(DFS)。
# 实现
public class DepthFirstSearch {
private boolean[] marked;
private int count;
public DepthFirstSearch(Graph G, int s) {
marked = new boolean[G.V()];
dfs(G, s);
}
private void dfs(Graph G, int v) {
marked[v] = true;
count++;
for (int w : G.adj(v)) {
if (!marked[w]) {
dfs(G, w);
}
}
}
public boolean marked(int w) {
return marked[w];
}
public int count() {
return count;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# 寻找图中的路径
public class DepthFirstPaths{
private bool ean [] marked; // 这个顶点上调用过dfs()了吗?
private int[] edgeTo; // 从起点到一个顶点的已知路径上的最后一个顶点
private final int s; // 起点
public DepthFirstPaths(Craph C, in t s) {
marked = new boolean[C.V()];
edgeTo = new int[G.V()];
this.s = s;
dfs(G, s);
}
private void dfs(Graph G, in t v)
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
dfs(G, w);
}
}
}
public boolean hasPathTo(int v) { return marked[v]; }
public Iterable<Integer> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])
path.push(x);
path.push(s);
return path;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# 连通分量
public class CC {
private boo1ean[] marked;
private int[] id;
private int count;
public CC(Graph G) {
marked = new boolean[G.V()];
id = new int[C.V()];
for (int s = 0; s < G.V(); s++)
if (!marked[s]) {
dfs(G, s);
count++;
}
}
}
private void dfs(Graph G, int v) {
marked[v] = true;
id[v] = count;
for (int w : C.adj(v))
if (!marked[w])
dfs(G, w);
}
public boolean connected(int v, int w) { return id[v] == id[w]; }
public int id(int v) { return id[v]; }
public int count() { return count; }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28