# 拓扑排序
# 定义
给定一幅有向图,将所有的顶点排序,使得所有的有向边均从排在前面的元素指向排在后面的元素 (或者说明无法做到这一点)
# 有向无环图(DAG)
有向无环图(DAG)就是一幅不含有环的有向图。
# 寻找有向环
public class DirectedCycle {
private boolean[] marked;
private int[] edgeTo;
private Stack<Integer> cycle; // 有向环中的所有顶点(如果存在)
private boolean[] onStack; // 递归调用栈上的所有顶点
public DirectedCycle(Digraph G) {
onStack = new boolean[G.V()];
edgeTo = new int[G.V()];
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!marked[v]) dfs(G, v);
}
private void dfs(Digraph G, int, v) {
onStack[v] = true;
marked[v] = true;
for (int w : G.adj(v)) {
if (this.hasCycle()) return;
else if (!marked[w]) {
edgeTo[w] = v;
dfs(G, w);
} else if (onStack(w)) {
cycle = new Stack<Integer>();
for (int x = v; x != w; x = edgeTo[x])
cycle.push(x);
cycle.push(w);
cycle.push(v);
}
}
onStack[v] = false;
}
public boolean hasCycle() {
return cycle != null;
}
public Iterable<Integer> cycle() {
return cycle;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# 顶点的深度优先次序
- 前序:在递归调用之前将顶点加入队列
- 后序:在递归调用之后将顶点加入队列
- 逆后序:在递归调用之后将顶点压入栈
# 代码实现
public class DepthFirstOrder {
private boolean[] marked;
private Queue<Integer> pre; // 所有顶点的前序排列
private Queue<Integer> post; // 所有顶点的后序排列
private Stack<Integer> reversePost; // 所有顶点的逆后序排列
public DepthFirstOrder(Digraph G) {
pre = new Queue<Integer>();
post = new Queue<Integer>();
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!marked[v]) dfs(G, v);
}
private void dfs(Digraph G, int, v) {
pre.enqueue(v);
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) dfs(G, w);
}
post.enqueue(v);
reversePost.push(v);
}
public Iterable<Integer> pre() {
return pre;
}
public Iterable<Integer> post() {
return post;
}
public Iterable<Integer> reversePost() {
return reversePost;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# 拓扑排序最终实现
public class Topological {
private Iterable<Integer> order; // 顶点的拓扑顺序
public Topological(Digraph G) {
DirectedCycle cycleFinder = new DirectedCycle(G);
if (!cycleFinder.hasCycle()) {
DepthFirstOrder dfs = new DepthFirstOrder(G);
order = dfs.reversePost();
}
}
public Iterable<Integer> order() {
return order;
}
public boolean isDAG() {
return order != null;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17